Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[bis(1*H*-benzimidazole- κN^3)copper(II)]- μ -3-(4-carboxylato-phenoxy)propionato- $\kappa^2 O$:O'] *N*,*N*-dimethylformamide solvate pentahydrate]

Li-Li Kong,^a Shan Gao,^a Li-Hua Huo^a and Seik Weng Ng^{b*}

^aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 23 October 2007; accepted 17 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.009 Å; R factor = 0.071; wR factor = 0.247; data-to-parameter ratio = 13.7.

In the crystal structure of the polymeric title compound, $\{[Cu(C_7H_5N_2)_2(C_{10}H_8O_5)]\cdot C_3H_7NO\cdot 5H_2O\}_n$, the 3-(4-carboxylatophenoxy)propionate dianion links the bis(benzimidazole)copper groups into a linear chain running along the *a* axis of the monoclinic unit cell, with the dianion binding through one O atom of each carboxylate end to confer a distorted square-planar environment on the copper center.

Related literature

For the 2,2'-bipyridine chelated transition metal derivatives of 3-(4-carboxylatophenoxy)propionic acid, see: Kong *et al.* (2007a,b).

Experimental

Crystal data

$Cu(C_7H_5N_2)_2(C_{10}H_8O_5)]$
$C_3H_7NO.5H_2O$
$M_r = 671.16$
Monoclinic, $P2_1/n$
a = 12.179 (2) Å
p = 15.898 (2) Å
= 16.420 (2) Å

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.590, T_{\rm max} = 0.880$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.247$ S = 1.115460 reflections 399 parameters $\beta = 102.834 (4)^{\circ}$ $V = 3099.9 (8) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.77 \text{ mm}^{-1}$ T = 295 (2) K $0.38 \times 0.25 \times 0.17 \text{ mm}$

23434 measured reflections 5460 independent reflections 3293 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$

66 restraints H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.68\ e\ {\mbox{\AA}}^{-3}\\ &\Delta\rho_{min}=-0.51\ e\ {\mbox{\AA}}^{-3} \end{split}$$

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2497).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kong, L.-L., Gao, S., Huo, L.-H. & Ng, S. W. (2007*a*). Acta Cryst. E63, m2851. Kong, L.-L., Gao, S., Huo, L.-H. & Ng, S. W. (2007*b*). Acta Cryst. E63, m2852.
- Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, m3153 [doi:10.1107/S1600536807060096]

catena-Poly[[[bis(1*H*-benzimidazole- κN^3)copper(II)]- μ -3-(4-carboxylatophenoxy)propionato- $\kappa^2 O:O'$] *N*,*N*-dimethylformamide solvate pentahydrate]

L.-L. Kong, S. Gao, L.-H. Huo and S. W. Ng

Comment

The present report follows our studies on the transition metal derivatives of 3-(4-carboxylatophenoxy)propionic acid. Previous reports (Kong *et al.*, 2007*a*,b) describe the crystal structures of isostrutural manganese(II) and cobalt(II) adducts with 2,2'-bipyridine. In the present work, DMF, which was used as a co-solvent, is incorporated into the crystal structure.

The 3-(4-carboxylatophenoxy)propionate dianion links the di(benzimidazole)copper groups into a linear chain running along the *a* axis of the monoclinic unit cell, with the dianion binding through one O atom each from both carboxylate ends to confer a distorted square-planar environment to the copper center.

Experimental

Copper nitrate hexahydrate (5 mmol), benzimidazole (10 mmol) and 3-(4-carboxylatophenoxy)propionic acid were dissolved in DMF-water (1:1, v/v) solution, and the pH was adjusted to 7 with 0.1 *M* sodium hydroxide. The solution was fltered and then set aside for the growth of crystals over a week.

Refinement

The displacement parameters of the water and *N*,*N*-dimethylformamide (DMF) molecules were restrained to be nearly isotropic. The non-H atoms of the DMF molecule were restrained to lie in an approximately flat plane, and the C25—O6, C25—N5 and N5—C26 (= N5—C27) bond distances were restrained to 1.25 (1), 1.35 (1) and 1.45 (1) Å, respectively. C-bound H atoms were placed in calculated positions [C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$], and were included in the refinement in the riding-model approximation. The water H-atoms were placed in chemically sensible positions, however, not all of them form hydrogen bonds. Since the positions of the water H atoms cannot be unambiguously determined, a table of hydrogen bond is not included.

Figures

Fig. 1. Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. Symmetry code: (i) x - 1, y, z.

catena-Poly[[[bis(1*H*-benzimidazole- κN^3)copper(II)]- μ - 3-(4-carboxylatophenoxy)propionato- $\kappa^2 O:O'$] *N*,*N*-dimethylformamide solvate pentahydrate]

Crystal data

 $[Cu(C_7H_5N_2)_2(C_{10}H_8O_5)] \cdot C_3H_7NO \cdot 5H_2O$ $F_{000} = 1404$ $M_r = 671.16$ $D_{\rm x} = 1.438 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 12961 reflections a = 12.179 (2) Å $\theta = 3.0-27.5^{\circ}$ *b* = 15.898 (2) Å $\mu = 0.77 \text{ mm}^{-1}$ c = 16.420(2) Å T = 295 (2) K $\beta = 102.834 (4)^{\circ}$ Block, blue $0.38 \times 0.25 \times 0.17 \text{ mm}$ V = 3099.9 (8) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer	5460 independent reflections
Radiation source: fine-focus sealed tube	3293 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -14 \rightarrow 13$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -18 \rightarrow 18$
$T_{\min} = 0.590, \ T_{\max} = 0.880$	$l = -19 \rightarrow 19$
23434 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.071$	H-atom parameters constrained
$wR(F^2) = 0.247$	$w = 1/[\sigma^2(F_o^2) + (0.1404P)^2 + 1.2497P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} = 0.001$
5460 reflections	$\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$
399 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
66 restraints	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0080 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.42338 (5)	0.38523 (4)	0.21419 (4)	0.0554 (3)
01	0.4755 (3)	0.2807 (3)	0.1671 (2)	0.0630 (10)
O2	0.5993 (4)	0.2998 (3)	0.2855 (3)	0.0785 (13)
O3	0.7685 (3)	0.2409 (3)	0.1683 (3)	0.0663 (11)
O4	1.2319 (4)	0.3954 (3)	0.1235 (3)	0.0865 (15)
05	1.2925 (3)	0.3207 (3)	0.2359 (3)	0.0663 (11)
O6	0.4539 (7)	0.0029 (5)	0.2326 (6)	0.169 (3)
O1W	0.8142 (4)	0.3305 (3)	0.5698 (3)	0.0871 (14)
H1W1	0.8856	0.3333	0.5841	0.131*
H1W2	0.7928	0.2797	0.5711	0.131*
O2W	0.6657 (6)	0.2406 (4)	0.4455 (4)	0.124 (2)
H2W1	0.6472	0.2499	0.3933	0.186*
H2W2	0.6073	0.2235	0.4609	0.186*
O3W	0.3860 (6)	0.2179 (5)	0.3771 (5)	0.156 (3)
H3W1	0.4473	0.2443	0.3950	0.233*
H3W2	0.3542	0.2355	0.3288	0.233*
O4W	0.4405 (7)	0.0577 (5)	0.3838 (6)	0.180 (3)
H4W1	0.3869	0.0384	0.3462	0.270*
H4W2	0.4198	0.0559	0.4299	0.270*
O5W	0.6616 (4)	0.0497 (4)	0.4591 (3)	0.1076 (18)
H5W1	0.6344	0.0923	0.4303	0.161*
H5W2	0.7053	0.0653	0.5044	0.161*
N1	0.5139 (4)	0.4592 (3)	0.1570 (3)	0.0579 (12)
N2	0.6480 (4)	0.5091 (3)	0.0992 (3)	0.0628 (13)
H2N	0.7116	0.5125	0.0849	0.075*
N3	0.4082 (4)	0.4714 (3)	0.2970 (3)	0.0619 (12)
N4	0.3327 (4)	0.5670 (3)	0.3673 (3)	0.0685 (14)
H4N	0.2825	0.5977	0.3824	0.082*
N5	0.5337 (6)	-0.0769 (4)	0.1470 (5)	0.119 (2)
C1	0.5601 (5)	0.2565 (4)	0.2215 (4)	0.0602 (14)
C2	0.6158 (5)	0.1738 (4)	0.2072 (4)	0.0638 (15)
H2A	0.5943	0.1307	0.2425	0.077*
H2B	0.5892	0.1566	0.1495	0.077*
C3	0.7430 (5)	0.1814 (4)	0.2266 (4)	0.0646 (16)
H3A	0.7709	0.2010	0.2834	0.078*
H3B	0.7772	0.1274	0.2202	0.078*
C4	0.8798 (4)	0.2598 (4)	0.1730 (4)	0.0562 (14)
C5	0.8999 (5)	0.3188 (4)	0.1135 (4)	0.0636 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H5	0.8399	0.3412	0.0744	0.076*
C6	1.0065 (5)	0.3428 (4)	0.1136 (4)	0.0622 (15)
H6	1.0191	0.3801	0.0731	0.075*
C7	1.0973 (4)	0.3128 (4)	0.1728 (3)	0.0538 (13)
C8	1.0759 (4)	0.2543 (4)	0.2300 (3)	0.0581 (14)
H8	1.1361	0.2331	0.2697	0.070*
C9	0.9696 (4)	0.2267 (4)	0.2302 (4)	0.0595 (14)
H9	0.9581	0.1862	0.2683	0.071*
C10	1.2128 (5)	0.3447 (4)	0.1763 (4)	0.0606 (14)
C11	0.6153 (5)	0.4466 (4)	0.1434 (4)	0.0604 (14)
H11	0.6592	0.3997	0.1623	0.072*
C12	0.4764 (5)	0.5357 (4)	0.1179 (3)	0.0552 (13)
C13	0.3774 (5)	0.5787 (4)	0.1105 (3)	0.0619 (14)
H13	0.3205	0.5588	0.1349	0.074*
C14	0.3653 (6)	0.6521 (4)	0.0657 (4)	0.0758 (18)
H14	0.2991	0.6828	0.0599	0.091*
C15	0.4500 (7)	0.6816 (4)	0.0286 (4)	0.0807 (19)
H15	0.4388	0.7315	-0.0016	0.097*
C16	0.5487 (6)	0.6396 (4)	0.0355 (4)	0.0727 (17)
H16	0.6050	0.6595	0.0104	0.087*
C17	0.5617 (5)	0.5667 (4)	0.0808 (3)	0.0582 (14)
C18	0.3140 (5)	0.5081 (4)	0.3077 (4)	0.0694 (16)
H18	0.2427	0.4941	0.2770	0.083*
C19	0.4946 (5)	0.5092 (4)	0.3561 (3)	0.0579 (14)
C20	0.6081 (5)	0.4948 (4)	0.3737 (4)	0.0706 (17)
H20	0.6400	0.4548	0.3447	0.085*
C21	0.6737 (6)	0.5429 (5)	0.4372 (5)	0.084 (2)
H21	0.7512	0.5343	0.4511	0.101*
C22	0.6276 (7)	0.6027 (4)	0.4801 (5)	0.083 (2)
H22	0.6747	0.6343	0.5212	0.100*
C23	0.5131 (7)	0.6168 (4)	0.4634 (4)	0.0771 (19)
H23	0.4815	0.6563	0.4933	0.093*
C24	0.4475 (6)	0.5696 (4)	0.4002 (4)	0.0640 (15)
C25	0.5381 (9)	-0.0393 (5)	0.2196 (7)	0.140 (4)
H25	0.6030	-0.0435	0.2617	0.168*
C26	0.4364 (13)	-0.0725 (14)	0.0809 (11)	0.336 (12)
H26A	0.4120	-0.0151	0.0727	0.504*
H26B	0.3773	-0.1058	0.0948	0.504*
H26C	0.4539	-0.0937	0.0306	0.504*
C27	0.6256 (8)	-0.1250 (6)	0.1309 (7)	0.134 (4)
H27A	0.6911	-0.1156	0.1747	0.201*
H27B	0.6409	-0.1081	0.0784	0.201*
H27C	0.6064	-0.1837	0.1287	0.201*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0417 (5)	0.0649 (5)	0.0626 (5)	-0.0028 (3)	0.0181 (3)	0.0022 (3)

01	0.046 (2)	0.073 (3)	0.069 (2)	-0.0064 (19)	0.0104 (19)	0.001 (2)
02	0.076 (3)	0.078 (3)	0.076 (3)	0.009 (2)	0.005 (2)	-0.008 (2)
03	0.039 (2)	0.079 (3)	0.082 (3)	-0.0037 (19)	0.0169 (18)	0.017 (2)
O4	0.051 (3)	0.128 (4)	0.075 (3)	-0.027 (2)	0.004 (2)	0.030 (3)
05	0.047 (2)	0.079 (3)	0.074 (3)	-0.002 (2)	0.015 (2)	0.008 (2)
O6	0.151 (6)	0.150 (6)	0.209 (7)	-0.001 (5)	0.044 (5)	0.004 (5)
O1W	0.084 (3)	0.089 (3)	0.086 (3)	0.026 (3)	0.015 (2)	0.000 (3)
O2W	0.154 (5)	0.127 (5)	0.087 (3)	0.010 (4)	0.018 (3)	0.001 (3)
O3W	0.136 (5)	0.181 (6)	0.149 (5)	-0.012 (5)	0.031 (4)	0.041 (5)
O4W	0.136 (5)	0.165 (6)	0.225 (7)	0.023 (5)	0.011 (5)	-0.010 (6)
O5W	0.078 (3)	0.148 (5)	0.102 (3)	0.019 (3)	0.032 (3)	-0.020 (3)
N1	0.051 (3)	0.065 (3)	0.062 (3)	-0.001 (2)	0.021 (2)	0.001 (2)
N2	0.052 (3)	0.074 (3)	0.069 (3)	-0.015 (2)	0.027 (2)	0.000 (3)
N3	0.043 (3)	0.073 (3)	0.073 (3)	0.001 (2)	0.020 (2)	0.007 (3)
N4	0.061 (3)	0.073 (3)	0.077 (3)	0.014 (3)	0.027 (3)	0.002 (3)
N5	0.104 (5)	0.116 (5)	0.126 (5)	0.014 (4)	0.000 (4)	-0.004 (5)
C1	0.047 (3)	0.065 (4)	0.072 (4)	-0.005 (3)	0.021 (3)	0.002 (3)
C2	0.047 (3)	0.058 (3)	0.091 (4)	-0.002 (3)	0.024 (3)	-0.001 (3)
C3	0.050 (3)	0.059 (3)	0.089 (4)	0.003 (3)	0.024 (3)	0.012 (3)
C4	0.041 (3)	0.063 (3)	0.068 (3)	-0.007 (2)	0.018 (3)	-0.001 (3)
C5	0.048 (3)	0.074 (4)	0.067 (3)	-0.001 (3)	0.010 (3)	0.014 (3)
C6	0.055 (4)	0.068 (4)	0.065 (3)	-0.004 (3)	0.017 (3)	0.013 (3)
C7	0.043 (3)	0.063 (3)	0.058 (3)	-0.003 (2)	0.015 (3)	0.004 (3)
C8	0.042 (3)	0.068 (4)	0.064 (3)	0.005 (3)	0.013 (3)	0.010 (3)
С9	0.040 (3)	0.072 (4)	0.069 (3)	0.005 (3)	0.017 (3)	0.019 (3)
C10	0.046 (3)	0.072 (4)	0.066 (4)	-0.004 (3)	0.016 (3)	0.006 (3)
C11	0.048 (3)	0.072 (4)	0.065 (3)	-0.003 (3)	0.018 (3)	-0.004 (3)
C12	0.055 (3)	0.061 (3)	0.051 (3)	-0.008 (3)	0.015 (2)	-0.009 (3)
C13	0.062 (4)	0.066 (4)	0.058 (3)	0.000 (3)	0.016 (3)	-0.003 (3)
C14	0.084 (5)	0.074 (4)	0.066 (4)	0.013 (4)	0.009 (3)	-0.011 (3)
C15	0.101 (6)	0.068 (4)	0.071 (4)	-0.008 (4)	0.015 (4)	0.009 (3)
C16	0.083 (5)	0.072 (4)	0.065 (4)	-0.016 (4)	0.021 (3)	-0.001 (3)
C17	0.062 (4)	0.060 (4)	0.054 (3)	-0.016 (3)	0.017 (3)	-0.004 (3)
C18	0.054 (4)	0.087 (4)	0.069 (4)	-0.001 (3)	0.018 (3)	0.005 (4)
C19	0.051 (3)	0.062 (3)	0.064 (3)	0.000 (3)	0.019 (3)	0.007 (3)
C20	0.059 (4)	0.075 (4)	0.080 (4)	-0.001 (3)	0.020 (3)	-0.010 (3)
C21	0.060 (4)	0.096 (5)	0.094 (5)	0.003 (4)	0.010 (4)	-0.008 (4)
C22	0.085 (5)	0.081 (5)	0.079 (5)	-0.006 (4)	0.012 (4)	-0.008 (4)
C23	0.095 (6)	0.066 (4)	0.071 (4)	0.003 (4)	0.021 (4)	-0.002 (3)
C24	0.077 (4)	0.051 (3)	0.070 (4)	0.006 (3)	0.031 (3)	0.003 (3)
C25	0.142 (7)	0.128 (7)	0.150 (7)	0.002 (6)	0.034 (6)	0.000 (6)
C26	0.327 (15)	0.329 (15)	0.330 (15)	0.029 (10)	0.028 (10)	-0.003 (10)
C27	0.119 (7)	0.136 (7)	0.156 (7)	0.005 (5)	0.048 (6)	0.009 (6)

Geometric parameters (Å, °)

Cu1—N3	1.967 (5)	C4—C9	1.378 (8)
Cu1—N1	1.984 (4)	C4—C5	1.415 (8)
Cu1—O5 ⁱ	1.993 (4)	C5—C6	1.353 (8)

Cu1—01	1 995 (4)	C5—H5	0.93
01-01	1 264 (7)	C6—C7	1 385 (8)
02	1 259 (7)	С6—Н6	0.93
03-C4	1 374 (6)	C7—C8	1 386 (7)
03-03	1 428 (7)	C7—C10	1 485 (7)
04—C10	1.242 (7)	C8—C9	1.369 (7)
O5-C10	1.275 (7)	С8—Н8	0.93
$O5 Cu1^{ii}$	1 993 (4)	С9—Н9	0.93
06-025	1 283 (8)	C11_H11	0.93
01W_H1W1	0.85	C12_C13	1 366 (8)
01W $H1W2$	0.85	C12 - C13	1.300(0) 1.405(7)
0^2W —H2W1	0.85	C12 - C14	1.409 (7)
02W - H2W2	0.85	C13—H13	0.93
O3W—H3W1	0.85	C14-C15	1 390 (9)
O3W - H3W2	0.85	C14—H14	0.93
O4W—H4W1	0.85	C15-C16	1 358 (9)
O4W - H4W2	0.85	C15—H15	0.93
O5W_H5W1	0.85	C16-C17	1 368 (9)
05W—H5W2	0.85	C16—H16	0.93
N1-C11	1 318 (7)	C18—H18	0.93
N1-C12	1.310(7) 1.405(7)	C19-C20	1 367 (8)
N2-C11	1.103(7) 1.342(7)	C19 - C24	1.507 (0)
N2—C17	1.372(7) 1 376(7)	C20—C21	1 394 (9)
N2—H2N	0.86	C20—H20	0.93
N3-C18	1 333 (7)	$C_{21} - C_{22}$	1 375 (10)
N3-C19	1 399 (7)	C21—H21	0.93
N4-C18	1 337 (8)	C^{22} C^{23}	1 379 (10)
N4—C24	1 383 (8)	C22—H22	0.93
N4—H4N	0.86	C23—C24	1 383 (9)
N5—C25	1 324 (8)	C23—H23	0.93
N5-C26	1.420 (10)	C25—H25	0.93
N5-C27	1 428 (8)	С26—Н26А	0.96
C1—C2	1.521 (8)	C26—H26B	0.96
C2—C3	1.516 (8)	C26—H26C	0.96
C2—H2A	0.97	С27—Н27А	0.96
С2—Н2В	0.97	С27—Н27В	0.96
С3—НЗА	0.97	С27—Н27С	0.96
С3—Н3В	0.97		
N3—Cu1—N1	93.53 (19)	С4—С9—Н9	120.5
$N3-Cu1-O5^{i}$	91.88 (18)	O4—C10—O5	120.1 (5)
$N1-Cu1-O5^{i}$	160.05 (19)	O4—C10—C7	121.2 (5)
N_3 — C_{11} — O_1	159 18 (19)	05-010-07	1187(5)
$N_1 - C_1 - O_1$	92.98 (17)	N1-C11-N2	112.4 (5)
$O5^{i}$ Cu1 O1	88.67 (16)	N1-C11-H11	123.8
$C_1 = C_1 = C_1$	105.0 (4)	N2_C11_H11	123.8
$C_{4} = 0_{1} = 0_{1}$	103.0(+) 1177(4)	C_{13} C_{12} N_{1}	123.0
	117.7(7)	$C_{12} = C_{12} = C_{12}$	120 6 (6)
	102.2 (3)	C13 - C12 - C17	120.0 (0)
HIWI-OIW-HIW2	110.2	NI-CI2-CI/	107.7 (5)

H2W1—O2W—H2W2	107.7	C12—C13—C14	117.5 (6)
H3W1—O3W—H3W2	110.2	C12—C13—H13	121.3
H4W1—O4W—H4W2	107.7	C14—C13—H13	121.3
H5W1—O5W—H5W2	110.2	C13—C14—C15	121.4 (7)
C11—N1—C12	106.0 (5)	C13—C14—H14	119.3
C11—N1—Cu1	129.1 (4)	C15—C14—H14	119.3
C12—N1—Cu1	124.8 (4)	C16—C15—C14	121.8 (6)
C11—N2—C17	107.9 (4)	С16—С15—Н15	119.1
C11—N2—H2N	126.0	C14—C15—H15	119.1
C17—N2—H2N	126.0	C15—C16—C17	117.1 (6)
C18—N3—C19	104.9 (5)	С15—С16—Н16	121.4
C18—N3—Cu1	127.8 (4)	C17—C16—H16	121.4
C19—N3—Cu1	127.3 (4)	C16—C17—N2	132.4 (6)
C18—N4—C24	107.4 (5)	C16—C17—C12	121.7 (6)
C18—N4—H4N	126.3	N2—C17—C12	105.9 (5)
C24—N4—H4N	126.3	N3-C18-N4	113.1 (6)
C25—N5—C26	121.7 (13)	N3—C18—H18	123.4
C25—N5—C27	122.2 (9)	N4—C18—H18	123.4
C26—N5—C27	116.1 (12)	C20-C19-N3	130.1 (6)
O2—C1—O1	121.5 (6)	C20—C19—C24	121.1 (6)
O2—C1—C2	120.1 (6)	N3—C19—C24	108.7 (5)
O1—C1—C2	118.4 (6)	C19—C20—C21	116.8 (6)
C3—C2—C1	111.6 (5)	С19—С20—Н20	121.6
С3—С2—Н2А	109.3	C21—C20—H20	121.6
C1—C2—H2A	109.3	C22—C21—C20	122.1 (7)
С3—С2—Н2В	109.3	C22—C21—H21	119.0
C1—C2—H2B	109.3	C20—C21—H21	119.0
H2A—C2—H2B	108.0	C21—C22—C23	121.4 (7)
O3—C3—C2	106.1 (5)	C21—C22—H22	119.3
O3—C3—H3A	110.5	C23—C22—H22	119.3
С2—С3—НЗА	110.5	C24—C23—C22	116.8 (6)
O3—C3—H3B	110.5	C24—C23—H23	121.6
С2—С3—Н3В	110.5	С22—С23—Н23	121.6
НЗА—СЗ—НЗВ	108.7	C23—C24—N4	132.5 (6)
O3—C4—C9	125.4 (5)	C23—C24—C19	121.7 (6)
O3—C4—C5	115.2 (5)	N4—C24—C19	105.8 (5)
C9—C4—C5	119.4 (5)	O6—C25—N5	120.8 (11)
C6—C5—C4	120.0 (5)	O6—C25—H25	119.6
С6—С5—Н5	120.0	N5—C25—H25	119.6
C4—C5—H5	120.0	N5—C26—H26A	109.5
C5—C6—C7	121.3 (5)	N5—C26—H26B	109.5
С5—С6—Н6	119.3	H26A—C26—H26B	109.5
С7—С6—Н6	119.3	N5—C26—H26C	109.5
C6—C7—C8	117.8 (5)	H26A—C26—H26C	109.5
C6—C7—C10	120.7 (5)	H26B—C26—H26C	109.5
C8—C7—C10	121.5 (5)	N5—C27—H27A	109.5
C9—C8—C7	122.5 (5)	N5—C27—H27B	109.5
С9—С8—Н8	118.8	H27A—C27—H27B	109.5
С7—С8—Н8	118.8	N5—C27—H27C	109.5

C8—C9—C4	119.0 (5)	H27A—C27—H27C	109.5
С8—С9—Н9	120.5	H27B—C27—H27C	109.5
N3—Cu1—O1—C1	-15.1 (7)	C17—N2—C11—N1	-1.1 (7)
N1—Cu1—O1—C1	93.0 (4)	C11—N1—C12—C13	178.6 (6)
O5 ⁱ —Cu1—O1—C1	-106.9 (4)	Cu1—N1—C12—C13	1.9 (8)
N3—Cu1—N1—C11	122.8 (5)	C11—N1—C12—C17	0.0 (6)
O5 ⁱ —Cu1—N1—C11	-131.8 (6)	Cu1—N1—C12—C17	-176.7 (4)
O1—Cu1—N1—C11	-37.4 (5)	N1—C12—C13—C14	-178.3 (6)
N3—Cu1—N1—C12	-61.3 (4)	C17—C12—C13—C14	0.1 (8)
05^{i} —Cu1—N1—C12	44.2 (8)	C12-C13-C14-C15	0.5 (9)
01—Cu1—N1—C12	138.5 (4)	C13—C14—C15—C16	-0.4 (10)
N1—Cu1—N3—C18	116.4 (5)	C14—C15—C16—C17	-0.2 (10)
05^{i} —Cu1—N3—C18	-44.4 (5)	C15—C16—C17—N2	179.0 (6)
O1— $Cu1$ — $N3$ — $C18$	-135.6 (5)	C15-C16-C17-C12	0.8 (9)
N1—Cu1—N3—C19	-61.8 (5)	C11—N2—C17—C16	-177.4 (6)
05^{i} —Cu1—N3—C19	137.4 (5)	C11—N2—C17—C12	1.0 (6)
01 - Cu1 - N3 - C19	46 2 (7)	C_{13} C_{12} C_{17} C_{16}	-0.8(9)
Cu1 - O1 - C1 - O2	-5.3 (6)	N1-C12-C17-C16	177.9 (5)
Cu1—O1—C1—C2	175.8 (4)	C13—C12—C17—N2	-179.4(5)
O2—C1—C2—C3	-43.4 (8)	N1—C12—C17—N2	-0.7 (6)
O1—C1—C2—C3	135.4 (6)	C19—N3—C18—N4	1.2 (7)
C4—O3—C3—C2	179.5 (5)	Cu1—N3—C18—N4	-177.3 (4)
C1—C2—C3—O3	-63.4 (7)	C24—N4—C18—N3	-1.0 (7)
C3—O3—C4—C9	-0.7 (8)	C18—N3—C19—C20	178.8 (6)
C3—O3—C4—C5	179.8 (5)	Cu1—N3—C19—C20	-2.7 (9)
O3—C4—C5—C6	179.0 (5)	C18—N3—C19—C24	-0.9 (6)
C9—C4—C5—C6	-0.5 (9)	Cu1—N3—C19—C24	177.6 (4)
C4—C5—C6—C7	-2.2 (9)	N3-C19-C20-C21	-179.7 (6)
C5—C6—C7—C8	2.8 (9)	C24—C19—C20—C21	0.0 (9)
C5—C6—C7—C10	-175.1 (6)	C19—C20—C21—C22	-0.5 (11)
C6—C7—C8—C9	-0.8 (9)	C20—C21—C22—C23	1.4 (11)
C10—C7—C8—C9	177.1 (5)	C21—C22—C23—C24	-1.6 (10)
C7—C8—C9—C4	-1.9 (9)	C22—C23—C24—N4	179.9 (6)
03-C4-C9-C8	-177.0 (5)	C22—C23—C24—C19	1.1 (9)
C5—C4—C9—C8	2.5 (9)	C18—N4—C24—C23	-178.6 (7)
Cu1 ¹¹ —O5—C10—O4	1.2 (7)	C18—N4—C24—C19	0.3 (6)
Cu1 ⁱⁱ —O5—C10—C7	-177.2 (4)	C20-C19-C24-C23	-0.3 (9)
C6—C7—C10—O4	-4.1 (9)	N3-C19-C24-C23	179.5 (5)
C8—C7—C10—O4	178.0 (6)	C20—C19—C24—N4	-179.4 (5)
C6—C7—C10—O5	174.3 (5)	N3-C19-C24-N4	0.4 (6)
C8—C7—C10—O5	-3.6 (9)	C26—N5—C25—O6	-0.2 (3)
C12—N1—C11—N2	0.6 (6)	C27—N5—C25—O6	-179.4 (3)
Cu1—N1—C11—N2	177.2 (4)		
Symmetry codes: (i) x -1, y , z ; (ii) x +1, z	<i>y</i> , <i>z</i> .		

